pipeline 3D + traversal

)]
Q
-
2]
k=
_d
=
Q
Q
o
<
—
o
=
=
a¥
=
=
@]
=
N
D
2
]
o
ja¥
o
o
i
QD
o,
e,
=
av
o
3
5
D
o
=
o
-
12
=)
Q
i
=
a0
-]
=

i T i R

Figure 9.6 House model in VRC according to the view orientation transformation

B T I -

E

Figure 9.7 Canonical view volume: (a) parallel case (b) perspective case

Parallel case The view mapping tensor V M ., is the composition of a shearing, a
scaling and a translation:

VMo =T par 0 Sparo H.

The shearing H. must shear the Direction Of Projection (DOP) vector in
(0,0,dop.,1)", thus shearing the possibly oblique view volume into a straight one.
The DOP wvector in VRC is defined in PHIGS as difference between the Center of
Window (CW) and the Projection Reference Point (PRP):

{uma.c + umin}/g
(Uﬂm;r + F:rnin)/z
0
1

DOP =CW — PRP =

So, it must be

and hence

y
4
},r:{\.-f:rnax—vmin}fl

I
I
I
I
I
I
I
I
I
I
I
+
I
I
I
I
I
I
I
I
I
I
I
I
1
1
1

Figure 9.8 Scaling to canonical view volume of parallel case

After the action of such tensor, the bounds of view volume are

Umin E L {_:: Umax s Umin 'C:_:: Yy {_:: Umax s B E Z E F
to be scaled and translated to the canonical volume

1<z<1, —-1<y<1, -1<z<0,

Umin + Umax Umin + Umax

Tt‘{f':T -
P (9

Spml =T (umax

Perspective case The view mapping tensor V M .. is the composition of a
translation of PRP, that coincides with COP in this case, to the origin, followed
by a shearing to make straight the view pyramid, and by a composite scaling to map
the result into the canonical volume:

VMPET — Sper' © Hz © T{_PRP)*

where:

1. T'(—PRP) moves the center of projection to the origin;
2. the shearing H . tensor coincides with the one of parallel case;
3. the scaling tensor can be decomposed as: Spe, = S20 57.

where S, maps the straight view pyramid onto a unit slope pyramid:

—2 vrp., —2 vrp),

1)

S5(

. _ . T 3 .
uma.r u?ﬂiﬂ Lrmﬂ:r: I“..-:run

and where S5 uniformly scales the three-space to move the z = B plane (the Back
plane) to the z = —1 plane:

—1 —1 -1 7

S,=185 : :
? (wp; +B wrp, + B urp, + B

)

Notice that vrp) is obtained by mapping the VRC origin by the translation to PRP
and by the subsequent shearing:

VRP' = (H.oT(—PRP))(0,0,0,1)"

DEF ViewMapping = S_per ~ SH_per ~ T_per;
DEF T_per = T:<1,2,3>: (AA:-:prp);
DEF SH_per = MAT:

<< 1, 0, 0, 0 >,

<0, , dopx / dopz >,

1, 0
0, 1, dopy / dopz >,
0, 0

, 0, 1 >>
(umin + umax)/2 - si:prp,
dopy = (vmin + vmax)/2 - s2:prp,
dopz = 0 - s3:prp
END ;
DEF S_per S5:<1,2,3>:<sx,sy,s2>
WHERE
sx = (2 * vrpz)/((umax - umin)*(vrpz + back)),
sy = (2 * vrp=z)/((vmax - vmin)*(vrp=z + back)),
sz = -1/(vrpz + back)
END ;

DEF umin = 51:window; DEF vmin = S2:window;
DEF umax = 53:window; DEF vmax = S4:window;
DEF vrpz = (83 ~ s1 ~ sl1 ~ UKPOL ~ SH_per ~ T_per ~ MK):

9.2.6 Perspective transformation

The so-called perspective transformation [FvDFH90|], mathematically an affine
homology, maps the canonical pyramid volume of central projections onto the
canonical parallelepiped volume ot parallel projections.

Such a transformation moves the origin to the improper point of z axis and the front
plane to the plane z = 0, while keeping invariant the back plane, of current equation
z = —1. Such a perspective tensor is associated with a matrix

0
0

0

0

1 — Z it s “min ?é —1
1+Em1€.n 1+3mi’.ﬂ.

—1 0

Example 9.2.2 (Perspective transformation)
Let us consider the vertices

—1
1 1

of canical view volume of Figure 9.7b, where r is at the intersection of planes r = —z,
y = —z and z = zZ,,in. and s 1s at the intersection of planes * = —z, ¥y = —z and
z = —1. They are respectively mapped to

—Zmin

P(r) = _’ES”'“ and to P(s) = 1

—Zmin 1

Script 9.2.4

DEF perspTransf = (MAT ~ INV):<
< 0, 0
< 0, 1
< 0, 0
<-:zmin/(1+zmin), O

WHERE
zmin = -:(vrpz + front)/(vrpz + back)

END;

0, -1>
0 0>,
1
0

0>,
, 1/(1+zmin)> >

The result of application of the perspTransf tensor to the model generated at the
previous step i1s shown in Figure 9.10. The PLaSM expression which generates the model

represented in such figure is

(perspTransf ~ ViewMapping ~ ViewOrientation): WCscene;

9.2.7 Workstation transformation

The workstation transformation maps a 3D workstation window in NPC onto a 3D
workstation viewport in DC3. This mapping is similar to the 2D one defined by GIKS
and discussed 1n Section 9.1.2. It is composed of a translation that moves the NPC
point of minimum coordinates to the origin, then by a scaling of the 3D extent to the
size of the viewport and by a final translation of the origin to the DC3 viewport point
of minimum coordinates. The device transformation 18 applied to the geometric data
of primitives, including the control points of curves and surfaces (see Section 11.2).
Such primitives are then rasterized in 3D, often using some variation of the z-buffer

approximated algorithm for removing the hidden parts. Exact algorithms for hidden-
surface removal would have already been applied in NPC coordinates.

So, it W = [wy, wy] x [we, ws| x[wg, wg] € NPC,and V' = [vq, v4] x [ve, vs] x [va, vg] C
DC'3, then we have

T'p:NPC— DC3

such that

g — 1 Vg — U g — Ug

Tp =T(vy,v9,v3) 0 8() o T'(—wy, —wa, —w3)

Wy — Wy Ws — Wo Wg — Wy

Figure 9.9 House model (in NPC) after the orientation and the view mapping

transformation

Figure 9.10 Canonical volume after perspective transformation

Figure 9.11 Canonical volume after perspective transformation and clipping

Figure 9.12 Canonical volume after perspective transformation, clipping and

scaling to the window 2D

‘

Figure 9.13 Final projected image: with (b) and without (a) removal of hidden

lines

8.1 Hierarchical graphs

A hierarchical model, defined inductively as an assembly of component parts [LGS5],
15 easily described by an acyclic directed multigraph, often called a scene graph or

hierarchical structure in computer graphics. The main algorithm with hierarchical
assemblies is the traversal algorithm, which transforms everyv component from local
coordinates to global coordinates, called world coordinates,

In this ease the notion of multigraph is introduced. A directed multigraph is a triplet
G := (N, A, f) where N and A are sets of nodes and arcs, respectively, and f: A — N 2
is a mapping from arcs to node pairs. In other words, in a multigraph, the same pair
of nodes can be connected by multiple arcs.

i 1

Ef E SEEad B K
E WEE |SSH HSEEEEEES

Figure 8.1 (a) Directed acyclic multigraph of an assembly (b) Tree of
sub-assembly Instances generated when traversing the multigraph

.1.1 Local eoordinates and modeling transformation

\ hierarchical multigraph is used to model a scene database in the sense describec
elow. In particular, each node may be considered a container of geometrical objects

rhere:

. The geometrical objects contained in a node a are defined using a system of
coordinates which is local to a.

. Each arc (a,b) is associated with an affine transformation of coordinates. In

simplest cases the identity transformation is used.
. The affine mapping of the arc (a, b) is used to transform the objects contained
within the b node to the coordinate system of the a node.

The previous properties are extended inductively to the subgraphs rooted in eacl
ode. In particular:

1. the subgraphs rooted in the b; sons of a, i.e., the geometrical data contained
in such subgraphs, may be affinely mapped to the coordinates of a. The affine
maps associated to (a,b;) arcs are used at this purpose;

. a subgraph may be instanced in a node (i.e., in its coordinate space) more
than once. As shown in Figure 8.1 and discussed in Example 8.3.1, the number
of instances of a subgraph in a node equates the number of different paths
that connect the subgraph to the node.

Summary The main ideas concerning scene graphs can be summarized as follows.
Nodes are econtainers of geometrical data stored in local coordinates. They are also

used as root of subgraphs, whose data are transformed to the node coordinates by a
traversal algorithm. Arcs (a, b) are associated with affine transformations, which map

the data contained in b from their local coordinates to the coordinates of a. More than
one arc may exist between the same node pair. This allows storage in memory only of
one copy of each container. The composite transformations of coordinates applied to
the linearized graph generated at traversal time are collectively known as the modeling
transformation.

GKS segments In GKS (Graphical Kernel System) [EKP87, ISO85] the storage
of graphical segments was introduced, which defines a two-level hierarchical system.

More specifically: graphical primitives like polylines, polyvgons and text strings
can be grouped into named collections, called segments. Segments are stored in a

*normalized” coordinate space, and cannot be nested. Geometric transformations,
including composite translation, rotation and scaling, can be applied to segments.
Also, segments can be made visible/invisible, picked interactively and highlighted.

PHIGS structure network In PHIGS (Programmer’s Hierarchical Interactive
Graphics System) [HHHWO91, ANSI®T| structure networks are used, which can be
visualized as acyclic graphs, where structures give the nodes of the graph., and
references between structures give the arcs between nodes. Hierarchical assemblies

of any depth can be modeled by such acyclic graphs. Structures are stored in a
centralized structure store (CSS) independent of workstations, were structures can
be posted. Structures can be interactively edited, by inserting, replacing and deleting
structure elements.

Inventor's scene graphs In Open Inventor [W094] scene databases are defined as
collections of scene graphs. A scene graph is an ordered collection of nodes, which
are basic building blocks holding shape descriptions, geometric transformations, light
sources or cameras. In other words, each node represents a geometry, property, or
egrouping object. Hierarchical scenes are created by adding nodes as children of

erouping nodes. This approach clearly results in building scene graphs as acyclic
directed graphs. No properties or transtormations are attached to graph arcs, which
just represent the containment relation between nodes. Node kits are provided as
C++ classes with a predefined behavior, which can be customized by the application
programmer by subclassing.

VRML scene graphs in VRML (Virtual Reality Modeling Language) [ANMO97,
[SO97] the same idea of scene graphs as ordered collections of nodes is used. The
reader should notice that VRML originates from the File Format of Open Inventor.
Such VRML files, written either in ASCII or gzipped binary format, can be used

to import scene graphs into a scene database or even as an alternative to creating
scene graphs programmatically. For example, scene graphs can be imported in Java
3D [SRDO00] using VRML files. Some non-trivial differences exist between the semantics
of acene graphs with versions 1.0 and 2.0 of VRML.

8.3 Traversal

The traversal of a hierarchical structure consists of a modified Depth First Search
(DFS) of its acyclic multigraph.® where each arc — and not each node — is traversed
only once. In particular, each node is traversed a number of times equal to the number
of different paths that reach it from the root node.

The aim of the traversal algorithm is to “linearize” a structure network, by

transforming all its substructures (i.e. all the subgraphs) from their local coordinates
to the coordinates of the root node, assumed as world coordinates.

3 Notice that the standard dfs graph traversal (see e.g. [AHUS3]) visits all the nodes once,
since 1t works by recursively visiting those sons of each node that it has not already visited.

For this purpose, a matrix denoted as the current transformation matriz (CTM)
1s maintained. Such a CTM is equal to the product of matrices associated with the
arcs of the current path from the root to the current node. For the sake of efficiency,
the traversal algorithm is implemented by using a stack of CTMs. When a new arc
1s traversed, the old CTM is pushed on the stack, and a new CTM is computed by

(right) multiplication of the old one times the matrix of the arc. When unfolding from
the recursive visit of the subgraph appended to the arc,* the CTM is substituted
by the one popped from the stack. The TRAVERSAL algorithm is specified by some
pseudo-language in Script 8.3.1.

Script 8.3.1 (Traversal of a multigraph)
algorithm TRAVERSAL ((N, A, f) : multigraph) |
CTM = identity matrix;
TraverseNode (root)

}

proc TRAVERSENODE (n : node) {

foreach a € A outgoing from n do TraverseArc (a);
ProcessNode (n)

}

proc TRAVERSEARC (a = (n,m) : arc) {
Stack.push (CTM);
CTM = CTM * a.mat:
TraverseNode (m);
CT'M := Stack.pop()

}

proc PROCESSNODE (n : node) {
foreach object € n do Process(CT' M * object)
}

