
Fast computation of inertia

through affinely extended Euler tensor

Antonio DiCarlo a and Alberto Paoluzzi b

aSMFM@DiS, Università “Roma Tre”
Via Vito Volterra, 62 I-00146 Roma, Italy

bDipartimento Informatica e Automazione, Università “Roma Tre”
Via della Vasca Navale, 79 I-00146 Roma, Italy

Abstract

We introduce an affine extension of the Euler tensor which encompasses all of the
inertia properties of interest in a convenient linear format, and we show how it
transforms under affine maps. This result generalizes the standard theorems on the
action of rigid transformations (translations and rotations) on inertia properties, al-
lowing for stretch and shear components of the transformation. More importantly, it
provides extremely simple and highly efficient computational tools. By these means,
a very fast computation of the inertia properties of polyhedral bodies and surfaces
may be obtained. The paper contains some mathematical background, a discussion
of the state of the art, and a detailed algorithmic description of the new method,
that computes and transforms the Euler tensor (strictly related to the inertia) under
general affine maps, through addition and multiplication of 4×4 matrices. Evidence
is given that the introduced transformation-based computational technique is much
faster than conventional domain integration.

Key words: computation of inertia, geometric modeling, Euler tensor
PACS: 02.70, 03.40, 62.20

1 Introduction

In this paper an affine extension of the Euler tensor is introduced, which car-
ries information on the moments of inertia of order 0 to 2 (mass, first moments,
second moments and products). It makes it possible to compute the moments

Email addresses: adicarlo@mac.com, paoluzzi@dia.uniroma3.it (Alberto
Paoluzzi).

Preprint submitted to Elsevier Science 20 April 2006

of inertia transformed by the action of a general affine map by means of sim-
ple, straightforward matrix multiplications. Our approach provides an explicit,
easily computed representation for the transformed inertia properties under
mappings that include not only translations and rotations, but also stretches
and shears—and even extreme, non-invertible “squashes”. Such a representa-
tion could be put to use in, say, automated optimum design of mechanisms,
when constraints are imposed on inertia properties and/or the objective func-
tion that depends on them. The new method introduced here may be used
when computing the inertia moments of a solid body by summing up the
elementary inertia moments associated to the cells of a boundary representa-
tion of the body. Such operation might be easily parallelized by writing some
SIMD 1 code, and using specialized hardware like the current programmable
GPUs 2 and the soon coming Cell Processors.

The evaluation of area, volume, centroid and moments of inertia of rigid homo-
geneous solids frequently arises in a large number of engineering applications,
both in Computer-Aided Design and in Robotics. Hence, quadrature formulae
for multiple integrals have always been of great interest in computer appli-
cations. Many papers on integration methods were related to solid modeling,
but—as Lee and Requicha pointed out in [1]—most computational studies
in multiple integration deal with calculations over very simple domains, like
a cube or a sphere, while the integrating function is very complicated. Con-
versely, in most of the engineering applications, the opposite problem usually
arises. For an early approach to domain integration in solid modeling the
reader is referred to Lee and Requicha’s paper [1]. Some milestones in the
rich engineering literature about volume integration on solid models are given
below.

The methods for volume integration introduced by several authors may be con-
sidered as a specialization of the Timmer and Stern’s general method [2,3],
based in turn on change of coordinates and on the repeated application of
the divergence theorem, and so reducing to the transformation of a volume
integral into a surface integral and then into a line integral. A volume integra-
tion over a tetrahedral covering induced by the piecewise affine boundary of a
polyhedral domain was given by Lien and Kajiya [4]. Cattani and Paoluzzi [5]
proposed boundary integration methods applicable to polyhedra as well as
to open 3D polyhedral surfaces and 2D polygons, and proved that the com-
putation of inertia properties is O(E), where E is the number of boundary
edges. A generalization of their methods to dimension-independent polyhedra
was given by Bernardini [6], who developed both boundary and decomposi-
tive algorithms, based on simplicial decompositions of the boundary or of the
interior, respectively. Gonzalez-Ochoa, Scott McCammon and Jorg Peters [7]

1 Single Instruction, Multiple Data.
2 Graphical Processor Units.

2

extended the methods in [5] to solids bounded by polynomial surfaces. Their
approach completely solves the problem of moments computation over solids
bounded by piecewise polynomial surfaces, i.e. the largest class of solids used
by PLM systems.

Our main theorem subsumes and generalizes the rotating- and translating-axis
theorems of engineering mechanics (see, e.g., [8]) to general affine mappings,
which are not even required to be invertible. In its essence, it was formulated
and proved about twenty years ago in component form, using standard tech-
niques from computer graphics, i.e., homogeneous coordinates, by one of us
(A.P.), while he was visiting the Robotics group at Cornell [9]. Theorem and
proof were never submitted to any journal, on the erroneous belief that they
were already known and did not deserve further publication. The approach
we discuss here has already been widely tested [10] and used to speed up ge-
ometric computing applications [11,12]. To the best of our knowledge, until
today no similar treatment is documented in the literature or on the web. We
further introduce a derived new method to compute the inertia of a surface or
a solid, by transforming and summing several instances of the inertia of the
standard 2- or 3-simplex.

In this paper, evidence is given that the presented transformational approach
to the computation of inertia properties is much faster than direct domain-
integration methods. Furthermore, it involves only additions and multipli-
cations of 4×4 matrices, operations that may be easily and efficiently im-
plemented as pixel shaders on the new programmable GPUs. This is done by
attaching to each triangle—the actual unit datum of a graphics co-processor—
the matrix representation of the corresponding extended Euler tensor, as a 4×4
texture [11]. Our approach may speed up tremendously modeling applications
(Boolean operations included) that manage millions of triangles in real time.
For computing inertia properties, in particular, our procedure performs either
one order of magnitude (on RAM models of computation) or three orders
of magnitude (if implemented on a programmable GPU) better than direct
integration [5]. This result is truly impressive: the method we introduce may
allow one to compute in real time the inertia properties of millions of triangles,
instead than thousands.

With respect to the issues of input efficiency, precision of calculations, and
robustness of computation, the approach here presented behaves very satis-
factorily. (a) The simplest input may be a stream of (coherently oriented)
boundary triangles. This kind of input may produce the real-time compu-
tation of the inertia of very complex models, if implemented on streaming
hardware, e.g. on the graphics coprocessors nowadays available on commodity
PCs. (b) The method is finite and exact for 3D polyhedra and polyhedral
surfaces, whereas smooth boundaries should be approximated by a boundary
triangulation. The precision of the computation is hence directly linked to the

3

precision of the triangulation. (c) The method is not an iterative quadrature,
but makes use of closed and very simple formulas, involving product and sum
of 4× 4 matrices of real numbers. Since the method is not iterative, the pre-
cision is not a real concern, and depends only on the precision of the used
arithmetics, i.e. on the representation of floats.

The rest of the paper is organized as follows. Section 2 gives some algebraic
background and defines the Euler tensor as well as the related inertia tensor
in Euclidean three-dimensional space. Section 3 sets forth the notion of Euler
tensor, affinely extended to four-dimensional space, shows how it transforms
under the action of (extended) affine mappings, and introduces a simple proce-
dure for its fast computation. The closing section discusses the benefits gained
and outlines some future developments. The paper is completed by two appen-
dices. Appendix A provides some elementary notions of affine geometry and a
geometrical introduction to homogeneous coordinates. Appendix B illustrates
a pseudocode implementation of the introduced approach and contrasts its
performance with that of more conventional algorithms.

2 Background

2.1 Double tensors and tensor product of two vectors

Tensors An nth-order tensor is a multilinear scalar-valued operator. In a d-
dimensional environment, it can be represented by dn components, decorated
with n indices and organized in a d×d×. . .×d (n times) hypermatrix. In this
paper we need to consider only tensors of order 2, also named double tensors,
identified with linear applications of the underlying Euclidean vector space
into itself. We employ here the term tensor as synonym of linear application
of a vector space V into itself. In other words, a tensor L ∈ Lin (V) is an
application that maps linearly the vector u ∈ V to the vector Lu ∈ V .

Tensor transposition Given L∈Lin (V), its transpose is the (unique) ten-
sor, denoted L>, such that, for all u,v ∈ V , (Lu)·v = u·(L>v), the Euclidean
inner product in V being denoted as a dot product, as usual.

Tensor product of vectors The tensor product of two vectors a,b ∈ V is
the tensor a⊗b ∈ Lin (V) that maps each vector u ∈ V to the vector (a ·u)b .
Transposition of a tensor product swaps the two vectors: (a⊗b)>= b⊗a . We

4

note for further use that 3

a⊗(Lb) = L (a⊗b) and (La)⊗b = (a⊗b)L>. (1)

Orthogonal decomposition of vectors Let e,u ∈ V , with e a unit vector
(i.e., s.t. e·e = 1). The tensors e ⊗ e and I − e ⊗ e (I being the identity on
V) map u to its orthogonal projections into the direction spanned by e and
its orthogonal complement, respectively: (e⊗e)u = (e·u)e , and (I−e⊗e)u =
u−(e·u)e .

2.2 Euler and inertia tensors in three-space

Let B be a body in E3. In mechanics, the Euler tensor about o is defined as:

E :=
∫
B

r⊗r dM, (2)

where r = x−o is the radius vector of the general point x∈B with respect to
the origin o∈ E3, and M is the mass measure supported by B (see, e.g., [14]).
The inertia tensor is then introduced as: 4

J :=
∫
B

(
|r|2 I− r⊗r

)
dM = (trE) I− E , (3)

where |r|2 := r·r . Notice that, while more familiar to many, the inertia tensor—
contrary to the Euler tensor—only belongs in three-space, its very definition
being motivated by the fact that planes (i.e., two-dimensional subspaces) have
codimension one. This is why E, not J, is to be extended to E4.

3 Extended Euler tensor

Let B be a regular, i.e., uniformly d-dimensional subset of E3, which we now
embed into a Euclidean 4-dimensional affine space E4, parametrized by a
Cartesian frame (o+, (e1, e2, e3;k)), with o+ = o−k, so that o+ /∈ E3, and
x∈E3 ⇔ (x−o+) · k=1. In other words, if the general point x∈E4 has coor-
dinates (x1, x2, x3; w), points in E3 are characterized by the property w=1.

3 Use that (a⊗(Lb))u = (a·u)(Lb) = L ((a·u)b) = L ((a⊗b)u) = (L (a⊗b))u
for all u∈V to prove the first identity. Follow the same lines for the second one.
4 The trace tr is the (unique) linear map on Lin (V) s.t., ∀a,b∈V, tr (a⊗b) = a·b .

5

Definition 3-1. The extended Euler tensor E+ is defined with respect to o+

exactly as the Euler tensor E is defined with respect to o in Equation (2):

E+ :=
∫
B

r+⊗ r+ dM, (4)

where r+ :=x− o+ = r + k is the radius vector w.r.t. o+. The Euler tensor is
readily recovered from E+, since E = PE+P, with P the orthogonal projec-
tion along k , i.e., P = I−k ⊗ k (see the coordinate representation below).
The inertia tensor J may then be computed from E through Equation (3).

Definition 3-2 (Coordinate representation). Using the structure products [5]

I (i, j, h; k) :=
∫
B

xiyjzhwk dM,

where x, y, z stand for x1, x2, x3, respectively, the following matrix representa-
tion of the extended Euler tensor is obtained:

[E+] =
∫
B

x2 xy xz xw

xy y2 yz yw

xz yz z2 zw

xw yw zw w2

dM,

or, performing the integration within the array, as:

[E+] =

I (2, 0, 0; 0) I (1, 1, 0; 0) I (1, 0, 1; 0) I (1, 0, 0; 1)

I (1, 1, 0; 0) I (0, 2, 0; 0) I (0, 1, 1; 0) I (0, 1, 0; 1)

I (1, 0, 1; 0) I (0, 1, 1; 0) I (0, 0, 2; 0) I (0, 0, 1; 1)

I (1, 0, 0; 1) I (0, 1, 0; 1) I (0, 0, 1; 1) I (0, 0, 0; 2)

,

where second moments appear on the main diagonal, while off-diagonal terms
are products of inertia. Since w = 1 all over B, the off-diagonal terms in the
fourth row or column provide the first moments of inertia, and the fourth
diagonal term the mass M(B).

Our main result provides a straightforward way of computing the extended
Euler tensor E ?

+ of the image B ? :=A(B) of B under a general affine map A,
once the extended Euler tensor E+ of B itself is known. Hence we obtain a
fast computation of E ? (and of J ?, if desired).

Theorem 3-3. Under the hypothesis that the action of the affine map A on
the mass measure M is such that the density of M? :=A(M) w.r.t. M , namely

6

dM?/dM , is constant over B, the extended Euler tensor transforms as follows:

E ?
+ = dM

dM

?
L+ E+ L>+ , (5)

where L+ is the linear part of the unique affine extension of A to E4 that
keeps o+ fixed: A+(o+) = o+. 5

Proof: Let x ? :=A+(x) and r ?
+ :=x ?− o+ . Since A+(o+) = o+ , r ?

+ =L+r+

(see Equation (A.1)). Therefore,

E ?
+ :=

∫
B

r ?
+⊗r ?

+ dM? =
∫
B

dM
dM

?
(L+r+)⊗(L+r+) dM.

Then, the two identities (1) plus the hypothesis that dM?/dM is constant over
B deliver the result:

E ?
+ = dM

dM

?
L+

 ∫
B

r+⊗ r+ dM

L>+ = dM
dM

?
L+ E+ L>+ . �

Remark 3-4. Note that in Equation (5) it is the density of the transformed
mass M? w.r.t. the original mass M that matters, not the density of either of
them w.r.t. the (signed 6) volume measure V . Equation (5) works fine even
if density of mass w.r.t. volume does not exist. However, in the very special
case M = M? = V , one has dM?/dM = det(L+) = det(L). This establishes a
connection with the notion of tensor densities [15].

Remark 3-5. It should be emphasized that A, and hence L+, is not required
to have an inverse for Equation (5) to hold. In fact, think of a cube on which
M = V , and let A be the affine map that squashes it into one of its square
faces. Of course, its linear part has zero determinant and no inverse. If the mass
density w.r.t. volume is assumed to be unaffected by A, then dM?/dM = 0 ,
and Equation (5) yields E ?

+ =0. If, on the contrary, A squeezes all of the mass
of the cube uniformly into the target square, then dM?/dM =1 and E ?

+ 6=0.

Example Let B be a surface embedded in E3. Equation (5) can be used to
get a fast computation of E+(B) =

∑
τ E+(τ), where τ = conv (x0,x1,x2)

7

is the general element of a triangulation of B. Let us also assume that the
mass measure supported by B has a piecewise constant density ρ with respect
to the area measure A, namely constant within each triangle τ . Let us take

5 Given A, its distinguished extension A+ is explicitly constructed in Appendix A.
6 You want to keep track of the orientation in order to be able to substract parts.
7 We write conv (. . .), instead of conv { . . . }, to stress that vertex ordering matters.

7

∆2 := conv (o,o+e1,o+e2) as the prototype 2-simplex in E3 and assume that
its mass and area measures coincide: M =A. Then, equation (5) reads

E+(τ) = ρ det(L+)L+ E+(∆2)L
>
+ ,

where L+ is characterized by the requirements that A(∆2) = τ and the unit
normal to ∆2 be mapped into the unit normal to τ , which imply:

L+ e1 = x1−x0 , L+ e2 = x2−x0 , L>+L+ e3 = e3 , L+ k = x0−o+ .

The extended Euler tensor of the prototype ∆2 is computed once and for all
making use of the structure products given in [5], which provide the result:

[E+(∆2)] =

I2(2, 0) I2(1, 1) 0 I2(1, 0)

I2(1, 1) I2(0, 2) 0 I2(0, 1)

0 0 0 0

I2(1, 0) I2(0, 1) 0 I2(0, 0)

=

1

24

2 1 0 3

1 2 0 3

0 0 0 0

3 3 0 12

,

where, from [5],

I2(i, j) :=
∫

∆2

xiyjdS =
1

i + 1

i+1∑
k=0

(
i + 1

k

)
(−1)k

k + j + 1
. (6)

4 Computational procedure

In this section we show how to compute the extended Euler tensor for a solid
body using the method introduced in the previous section. The approach is
implemented here using a mathematical pseudocode. The first prototype was
developed in PLaSM, a functional design language [16,10] for rapid prototyping
of geometric algorithms and applications [17]. An implementation of the same
computation for surfaces is given in Appendix B.

4.1 Fast computation of inertia properties of solids

To focus on the essentials, let us assume that mass and volume measures coin-
cide. With a view to computing the extended Euler tensor E+(B) of a general
solid body B ⊂ E3, we compute first the extended Euler tensor E+(∆3) of the

8

prototype 3-simplex ∆3 := conv (o,o + e1,o + e2,o + e3). Then, we use for-
mula (5) repeatedly to transform E+(∆3) into E+(Tτ), where Tτ := conv (o, τ)
is the o-based tetrahedron associated with the general element τ of a trian-
gulation of the boundary of B, summing up all contributions:

E+(B) =
∑

τ∈∂B E+(Tτ) (7)

Remark 4-1. The contributions from the intersections {Tτ\B, τ ∈ ∂B}, i.e.,
the parts of the generated tetrahedra that fall outside B, properly cancel out
in the above summation. This fact is built into the integration procedure,
since tetrahedral integrals get signed according to the visibility from o of the
internal normal to the τ triangle.

Def Euler(conv {o,v0,v1,v2} ⊂ E3) = det(G) G E+ GT

where

G :=

v0 v1 v2 0

0 0 0 1

, E+ := 1
120

2 1 1 5

1 2 1 5

1 1 2 5

5 5 5 20

end;

Fig. 1. Extended Euler tensor associated with a boundary triangle

The pseudocode in Figure 3 computes the tensor J = inertia(Σ), via equa-
tion (3), from a boundary triangulation Σ := {τ} of ∂B.

Def inertia(Σ) = tr(E3×3) I− E3×3

where

E+(B) :=
∑
τ∈Σ

Euler(τ),

E3×3 := upper-diagonal submatrix of E+(B)
end;

Fig. 2. Inertia of a solid computed from a triangulation of its boundary

4.2 Sample computations

A Cartesian frame is now taken for granted, and E3 briefly identified with R3.

Boundary triangulation of the standard cube An explicit triangulation
of the boundary ∂C3 of the standard cube C3⊂R3 is given as a pseudocode list

9

of triangles. Each one of the 12 triangles is given as a triple of points, where
the representation of a point is the list of its coordinates.

Def cube boundary := (τ1, τ2, . . . , τ12)
where

τ1 := ((0, 0, 0), (1, 1, 0), (1, 0, 0)), τ2 := ((0, 0, 0), (0, 1, 0), (1, 1, 0)),
τ3 := ((1, 0, 0), (1, 0, 1), (0, 0, 1)), τ4 := ((1, 0, 0), (0, 0, 1), (0, 0, 0)),
τ5 := ((0, 0, 0), (0, 0, 1), (0, 1, 0)), τ6 := ((0, 1, 0), (0, 0, 1), (0, 1, 1)),
τ7 := ((0, 0, 1), (1, 0, 1), (1, 1, 1)), τ8 := ((1, 1, 1), (0, 1, 1), (0, 0, 1)),
τ9 := ((1, 1, 0), (0, 1, 1), (1, 1, 1)), τ10 := ((1, 1, 0), (0, 1, 0), (0, 1, 1)),
τ11 := ((1, 0, 0), (1, 1, 0), (1, 0, 1)), τ12 := ((1, 1, 0), (1, 1, 1), (1, 0, 1))

end;

Fig. 3. Triangulation of the boundary of the standard unit cube.

Extended Euler tensor of the standard cube The pseudocode expres-
sion on l.h.s. of Figure 4 returns the 4×4 matrix [E+(C3)], shown on r.h.s.

Euler(B) :=
∑

τ∈cube boundary

Euler(conv (o, τ)) =
1

12

4 3 3 6

3 4 3 6

3 3 4 6

6 6 6 12

Fig. 4. Computation of the extended Euler tensor of the standard unit cube.

Extended Euler tensor of a rotated unit cube Let the standard cube
be rotated by π/4 about the axis (1,−1, 0) through the origin. According to
Theorem 3-3, the transformed (extended) Euler tensor may be obtained by
evaluating the expression

Euler(Q(B)) := det(Q) Q Euler(B) Q>,

where Q is given by the pseudocode in Figure 6, and det(Q) = 1 since Q
is a rotation. The matrix of the (extended) Euler tensor of rotated cube is
computed in Figure 6 by summing the contributions of the (transformed)
boundary triangles, by using the pseudocode given in Figure 5. The two results
clearly coincide.

10

Euler(Q(B)) :=
∑

τ∈cube boundary

Euler(conv (o,Q(τ)))

where

Q := Rz(−π
4
) Rx(

π
4
) Rz(

π
4
),

Rx(α) :=

1 0 0

0 cos α − sin α

0 sin α cos α

, Rz(α) :=

cos α − sin α 0

sin α cos α 0

0 0 1

end;

Fig. 5. Computation of the extended Euler tensor of the rotated unit cube.

0.09405663803669642 0.010723304703363204 0.08838834764831871 0.10355339059327409

0.010723304703363204 0.09405663803669642 0.08838834764831872 0.1035533905932741

0.08838834764831868 0.08838834764831871 0.8118867239266054 0.8535533905932726

0.10355339059327409 0.1035533905932741 0.8535533905932726 0.9999999999999991

Fig. 6. Extended Euler tensor of the rotated unit cube.

4.3 Cow example

The algorithm for fast computation of the Euler tensor discussed in this paper
has been used in other projects. In particular, it constitutes the computational
core of our parallel streaming design evaluation [12] with progressive genera-
tion of solid models starting from boundary triangulations [11]. In this case
a balanced BSP-tree and cell decomposition are generated after an O(n) pre-
processing that computes the Euler tensor for each input triangle. In Figure 7
the solid cell decomposition for a cow model is shown.

The idea of algorithm [11] is very simple. A fast preprocessing, executed in
linear time with the number of input triangles, computes for each triangle the
4x4 extended Euler matrix that codifies numerically its mechanical behavior.
The sum of all such matrices gives a good representation of the spatial distri-
bution of the surface points. Such a matrix may be used used to generate a
best-fitting ellipsoid, centered in the center of mass of the surface, that may
be considered mechanically equivalent to the triangulated surface.

11

Fig. 7. Exploded view of the balanced BSP solid model generated from a boundary
triangulation, and using our fast computation of the Euler tensor.

The first solid approximation to the surface is given by the smallest best-fitting
parallelepiped, which has edges parallel to the principal axes of the ellipsoid
and contains the surface. Such a solid is represented as a standard BSP-tree, as
the intersection of six linear subspaces tangent to the boundary surface. This
enclosing solid is then split by a plane through the center of mass and normal to
the direction of maximal elongation. The set of input triangles is in turn split
into two subsets, according of whether they are above or below this dividing
plane, and the two subsets are associated to the below and above sub-trees
of the BSP root. The confinement of each surface subset into a narrower and
properly rotated best-fitting parallelepiped, and its splitting into the principal
direction are recursively repeated for each sub-tree.

The Euler tensor of the model in Figure 7 was computed in 0.17 seconds,
on a triangulation with 5804 triangles, using an Intel Centrino 2.00Ghz with
1.047.784 KB of RAM and MS Visual C++ 6.0. The sustained average ob-
tained on several, even much bigger, models is slightly greater than 35,000
triangles/sec, for a total number of more than 350,000 integrals/sec of a low-
degree scalar field over a triangular domain.

12

5 Performance evaluation

In this section we compare the relative performance of the computation of the
(matrix representation of the) Euler tensor for a single triangle in E3, since the
inertia properties of either a surface or a body in 3D are obtained by summing
up such matrices over a boundary triangulation. We show that computations
based on Equation (5) are more than one order of magnitude faster than those
based on formulæ for direct integration on triangles in E3, as given in [5].

From the implementation documented in Listing B.2 given in Appendix B, one
can see that the direct computation of the Euler tensor for a triangle in E3

requires 55 tuples of values for the variables used in the integration formula.
Without code optimizations, 9 powers with integer exponent, 14 products,
6 binomial coefficients and 11 additions or differences are to be computed for
each tuple. An optimistic estimate of the computation size provides therefore
a lower bound of 55×40 = 2200 floating-point operations per triangle. Several
such operations are not actually elementary, but they can be approximately
considered to be so after some code optimization.

To compare, consider that the fast computation based on Equation (5), as
implemented in Figure B.3 given in Appendix B, requires: (i) 2 multiplica-
tions of 4×4 matrices, for a total of 2×16 ×7= 224 real operations; (ii) the
computation of the matrix representation of the affine map G, that requires
2×3 subtractions and 3×3 multiplications and subtractions to be assembled,
for a total of 15 algebraic operations; (iii) det(G) actually consists in a 3× 3
determinant, for another 17 operations. But, considering (a) the special struc-
ture of the term Euler2D (one row and one column zero), (b) the structure of
G (one unit row) and (c) the fact that the result is a symmetric matrix (only
(4×5)/ 2 = 10 strict components have to be computed), the double product
of matrices globally requires 96 algebraic operations, instead than 224. The
whole computation hence requires 96 + 15 + 17 = 128 floating-point serial op-
erations per triangle. This proves our claim that the new method performs one
order of magnitude better than direct integration [5], using the RAM model
of computation.

If the computation of the extended Euler tensor is implemented as a pixel
shader on the new programmable GPUs, then the new method is globally
faster by three orders of magnitude, due to the specialized hardware support-
ing parallel product and parallel sum of 4×4 matrices and 4-vectors. As a
matter of fact, one order of magnitude is gained by parallel data paths for
product of matrices. The matrix (G Euler2D) has one zero column, so that a
vectorized implementation may use 12 independent data paths, each one for
a cost of 3 products and 2 sums. Ten data paths may be used for the second
matrix product, which computes 10 strict components, again for a cost of 3

13

products and 2 sums. Serializing the vectorized operations, we have at most
12 parallel data paths, each one for 10 floating point operations per triangle.
Another order of magnitude is gained in the summation of Euler matrices of
the triangles, due to the separate data paths of the 4×4 = 16 components
(better: 10 strict components) of the resulting matrix.

6 Conclusion and further developments

We have given a precise definition of the extended Euler tensor, and provided
simple formulæ to (a) fast compute and (b) easy transform the moments of
inertia under (c) general affine maps through (d) simple operations (multi-
plication and addition) with 4× 4 matrices. This technique is much faster
than conventional volume integration and can be implemented efficiently on
programmable GPUs. A pseudocode implementation of both the conventional
and the new procedure has been presented and analyzed to compare their
computational cost. The method introduced here is beeing used to speed up
streaming applications [11,12] in high-performance geometric computing.

A “textured inertia” is also an important component of the new descriptive
language Bioplasm for multiscale modeling and simulation of deformable liv-
ing tissues and organs, we are currently designing. In fact, we are strongly
interested in developing innovative geometric modeling tools for biophysics
simulations of soft, growing bodies, on widely scattered time and space scales.
The computation of inertia properties via the extended Euler tensor may
be intended as a paradigmatic plan of action for geometric computing with
biophysics-based textures.

Acknowledgements

We are pleased to acknowledge valuable comments and advice from Profes-
sor Imre Horváth and two anonymous reviewers, that made this paper more
readable and complete. The first idea of the extended Euler tensor and its
transformations under general affine maps come to A.P. during his sabbatical
leave at Cornell in 1986, while tackling a problem posed by Professor John
E. Hopcroft. We would also like to thank Giorgio Scorzelli for his help with
the computation of the cow example. The research of the last author was sup-
ported in part by IBM Corp. through a SUR (Shared University Resources)
Award and PLM-Lab donation to Roma Tre, and by the grant 2001-2004 from
Spike Consortium, on MIUR Italian National Project SPI-09.

14

References

[1] Y. Lee, A. Requicha, Algorithms for computing the volume and other integral
properties of solids i: known methods and open issues, Communications of the
ACM 25 (9) (1982) 635–641.

[2] G. Timmer, J. Stern, Computation of global geometric properties of solid
objects, Computer-Aided Design 12 (6) (1980) 301–304.

[3] M. Morteson, Geometric Modeling, John Wiley & Sons, New York, 1985.

[4] S. L. Lien, J. Kajiya, Symbolic method for calculating the integral properties
of arbitrary nonconvex polyhedra, IEEE Computer Graphics & Applications
4 (10) (1984) 35–41.

[5] C. Cattani, A. Paoluzzi, Boundary integration over linear polyhedra, Computer-
Aided Design 22 (2) (1990) 130–135.

[6] F. Bernardini, Integration of polynomials over n-dimensional polyhedra,
Computer Aided Design 23 (1) (1991) 51–58, special issue ‘Beyond Solid
Modeling’.

[7] C. Gonzalez-Ochoa, S. McCammon, J. Peters, Computing moments of objects
enclosed by piecewise polynomial surfaces, ACM Trans. Graph. 17 (3) (1998)
143–157.

[8] T. C. Huang, Engineering Mechanics, Addison-Wesley, Reading, Massachusetts,
1969, second edition.

[9] A. Paoluzzi, Integration constraints in parametric design of physical objects,
Techn. Rep. 87-804, Dept. of Computer Science, Cornell University, Ithaca, NY
(January 1987).

[10] A. Paoluzzi, Geometric Programming for Computer Aided Design, John Wiley
& Sons, Chichester, UK, 2003.

[11] C. Bajaj, A. Paoluzzi, G. Scorzelli, Progressive conversion from B-rep to BSP
for streaming geometric modeling, Computer-Aided Design and Applications
3 (5–6) (2006).

[12] G. Scorzelli, A. Paoluzzi, V. Pascucci, Parallel solid modeling using BSP
dataflow, International Journal of Computational Geometry & Applications 16
(2006), to appear.

[13] E. Clayberg, D. Rubel, Eclipse: Building Commercial-Quality Plug-ins, Eclipse
Series, Addison-Wesley Professional, Boston, MA, 2004.

[14] M. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science
and Engineering, Academic Press, San Diego, CA, 1981.

[15] J. H. Heinbocke, Introduction to Tensor Calculus and Continuum Mechanic,
Trafford Publishing, Canada, 2001.

15

[16] A. Paoluzzi, V. Pascucci, M. Vicentino, Geometric programming: a
programming approach to geometric design, ACM Transactions on Graphics
14 (3) (1995) 266–306.

[17] A. Paoluzzi, PLaSM language web site, http://www.plasm.net, 2005.

[18] The Eclipse Consortium, Eclipse web site, http://www.eclipse.org, 2005.

A APPENDIX: Linear representation of affine maps

A.1 Affine maps

An affine map A : E → E is defined as

A : x 7→ (o + to) + L (x−o) , (A.1)

where L ∈ Lin (V) is the linear part of A and to = A(o)−o ∈ V is the
displacement of the origin due to A. Obviously, A leaves the origin fixed if
and only if to = 0 ; it is a translation if and only if its linear part is the
identity: L = I.

A.2 Radius representations of an affine map

The action A.1 of an affine map A on the general point x of an affine space
E may be rephrased in terms of the corresponding radius vector r = x − o ,
by introducing the application Ro : V→V which maps the radius vector of x
into the radius vector of A(x):

Ro(r) := A(o + r)− o = to + Lr . (A.2)

Hence, the radius representation Ro is linear if and only if to = A(o)−o = 0.
Therefore, it is plainly impossible to obtain linear representations of all affine
maps of E staying within Lin (V). However, a simple one-dimensional extension
of V does the trick.

A.3 Linear representation through one-dimensional extension

Let us define the extended vector space

V+ := { (u, α) |u∈V , α∈R } , (A.3)

16

endowed with the obvious extension of the basic linear operations:

(u, α) + (v, β) := (u+v, α+β) , λ (u, α) := (λu, λ α) .

It is useful to identify V with a 1-codimensional subspace of V+, getting rid
of the cumbersome pair notation through the following positions:

u ' (u, 0) & k := (0, 1) ⇒ (u, α) ' u+αk . (A.4)

The vector k /∈ V is made into a unit vector orthogonal to V by the following
extension ot the Euclidean inner product:

(u+αk)·(v+β k) :=u·v + α β .

Extending V into V+ entails the extension of the affine point-space E = o +V
into E+ = o+V+. In order to extend the affine map A to E+, its linear part L
has to be extended to a tensor L+ ∈ Lin (V+). This gives us some freedom,
since L+k, the image of k under the extension of L, can be chosen at will. In
fact, the general linear extension of L has the form:

L+ = L + k⊗(a+αk), (A.5)

where L is tacitly identified with its trivial extension into Lin (V+), such that
Lk = 0. 8 We now shift the origin of E+ away from E (identified with the
hyperplane through o normal to k), assuming as origin the point

o+ = o− k ⇒ r+ :=x− o+ = r + k . (A.6)

The radius representation R+ of A+ with respect to o+ reads therefore:

R+(r+) := A+(o++ r+)− o+ = A+(o + r)− o+

= to+ k + L+ r

= to+ k + L+(r+− k)

= (to− a) + (1−α)k + L+ r+ .

(A.7)

Hence, the distinguished extension characterized by a = to and α = 1, i.e.,

L+ = L + k⊗(to+ k), (A.8)

renders R+ linear for any affine map of E, by embedding the general trans-
lation r 7→ r + to of E into the shear r+ 7→ (k ⊗ to) r++ (k ⊗ k) r+ of the
extended space E+ (see Figure A.1).

8 This corresponds to the identification of an n×n matrix with the (n+1)×(n+1)
matrix obtained by adding to the previous one a null row and a null column.

17

o+=A+(o+)

k

o
to

L+k

A(o)

Fig. A.1. A translation of E , i.e., A : x 7→ x + to , is extended to a shear of E+:
A+ : x 7→ o++ L+(x− o+) = o++ (k⊗(to+ k)) r+ = o++ (k·r+) (to+ k).

Homogeneous coordinates are provided by any Cartesian frame (o+, (β,k)),
with β an arbitrary orthonormal basis of V .

B APPENDIX: Fast computation of inertia properties of surfaces

In this Appendix we provide a pseudocode implementation of the conven-
tional and the fast computation of the extended Euler tensor for a surface.
Both algorithms were actually tested using the RAD language PLaSM for the
development of geometric algorithms [16,10,17]. The PLaSM IDE is available
as an Eclipse plugin [18,13].

For the same reasons why mass was identified with volume in Section 4, de-
voted to solid bodies, we assume here that mass and area measures coincide.
As in Section 4.2, a Cartesian frame is taken for granted and the ambient
space E3 is identified with R3.

B.1 Structure products on the standard 2-simplex in R2

Figure B.1 displays a pseudocode implementation of formula (6) which pro-
vides the structure products I2(α, β) for the standard triangle ∆2 ∈ R2. This
function is used as a component in Sections B.2 and B.3, where results are
transferred—in different ways—to a general triangle in R3.

18

Def term2D(α, β ∈ N) :=
1

α + 1

α+1∑
h=0

(
α + 1

h

)
−1h

h + β + 1

Fig. B.1. Implementation of structure products I2(α, β).

B.2 Fast computation of the extended Euler tensor for a general triangle in R3

Figure B.3 provides a pseudocode implementation of the fast computation
method presented in this paper. The linear representation of an affine trans-
formation that maps the prototype triangle conv (0, e1, e2) ' ∆2 into the
general triangle τ =conv (v0,v1,v2) is denoted as G. The points v0,v1,v2 are
supposed affinely independent.

B.3 Direct integration of the structure products on a general 2-simplex in R3

In order to compare the performance of the approach presented in this paper
and documented above with the conventional integration method for structure
products [5], we give a functional implementation of the latter in Figure B.2.
The functional pseudocode is a straightforward translation of Formula B.1
for direct integration over the triangle τ = conv (v0,v1,v2) ⊂ R3, whose
first and second sides through v0 are denoted (a1, a2, a3) ≡ a :=v1−v0 and
(b1, b2, b3) ≡ b :=v2−v0. Formula B.1 is proved in [5], where an imperative
coding in Pascal is also given.

Iτ (α, β, γ) =
∫
τ

xαyβzγ dA

= 2 A(τ)
α∑

h=0

(
α

h

)
xα−h

o

β∑
k=0

(
β

k

)
yβ−k

o

γ∑
m=0

(
γ

m

)
zγ−m

o · (B.1)

·
h∑

i=0

(
h

i

)
ah−i

1 bi
1

k∑
j=0

(
k

j

)
ak−j

2 bj
2

m∑
l=0

(
m

l

)
am−l

3 bl
3 I2(µ, ν) ,

where µ=(h+k+m)−(i+j+l), ν =(i+j+l), and I2(µ, ν) is the general structure
product for the standard triangle ∆2 ⊂ R2, as given by formula (6) (see also
Section B.1). Since our reference implementation [12] is data-flow-oriented,
and data-flow does not allow for iteration, formula (B.1) is implemented by
generating all the tuples (i, j, l, h, k,m, a, b, c), and streaming them all through
the local function formula.

19

Def EulerTensor (v0,v1,v2 ⊂ E3) :=

int(2, 0, 0) int(1, 1, 0) int(1, 0, 1) int(1, 0, 0)

int(1, 1, 0) int(0, 2, 0) int(0, 1, 1) int(0, 1, 0)

int(1, 0, 1) int(0, 1, 1) int(0, 0, 2) int(0, 0, 1)

int(1, 0, 0) int(0, 1, 0) int(0, 0, 1) int(0, 0, 0)

where

a := v1 − v0, b := v2 − v0, (x0, x1, x2) := v0,
jacobian := |a× b|,
int (α, β, γ ∈ N) :=

jacobian ∗
∑

(h,k,m)∈S1

∑
(i,j,l)∈S2

formula(i, j, l, h, k,m, α, β, γ)

where
S1 := Sh × Sk × Sm, S2 := Si × Sj × Sl,
Sh := {0, 1, . . . , α}, Sk := {0, 1, . . . , β}, Sm := {0, 1, . . . , γ},
Si := {0, 1, . . . , h}, Sj := {0, 1, . . . , k}, Sl := {0, 1, . . . ,m}
formula(i, j, l, h, k,m, α, β, γ ∈ N) :=(

α
h

)
∗
(

β
k

)
∗
(

γ
m

)
∗
(

h
i

)
∗
(

k
j

)
∗
(

m
l

)
∗

(x0
∧(α− h)) ∗ (y0

∧(β − k)) ∗ (z0
∧(γ −m))∗

(ax
∧(h− i)) ∗ (bx

∧i) ∗ (ay
∧(k − j)) ∗ (by

∧j)∗
(az

∧(m− l)) ∗ (bz
∧l) ∗ term2D(µ, ν),

µ := h + k + m− ν,
ν := i + j + l

end
end;

Fig. B.2. Computation of the Euler tensor for a triangle with vertices v0,v1,v2 ∈ E3

using direct integration formulæ.

20

Def FastEulerTensor (v0,v1,v2 ⊂ E3) := det(G) G Euler2D GT

where

Euler2D :=
1

24

2 1 0 4

1 2 0 4

0 0 0 0

4 4 0 12

,

G :=

v1 − v0 v2 − v0 (v1 − v0)× (v2 − v0) v0

0 0 0 1

end;

Fig. B.3. Fast computation of the Euler tensor for the triangle with vertices
v0,v1,v2 ∈ E3.

Fig. B.4. The Eclipse IDE with the PLaSM plugin in action.

21

