
Visual Programming of Location-Based Services

A. Bottaro2, E. Marino1, F. Milicchio1, A. Paoluzzi1, M. Rosina2, and F. Spini1

1 CAD Laboratory, Dept of Computer Science and Aut., Roma Tre University,
Via della Vasca navale 79, 00146 Roma, Italy

2 SOGEI S.p.a., Via M. Carucci 99, 00143 Roma, Italy

Abstract. In this paper we discuss a visual programming environment
for design and rapid prototyping of web applications, securely connected
to remote Location-Based Services. This visual programming approach
is based on computation as data transformation within a dataflow, and
on visual composition of web services. The VisPro environment uses a
very simple approach to service composition: (a) the developer takes a
set of web widgets from a library, (b) builds a user interface by drag and
drop, (c) builds the application logic of the web service by drawing the
connections between boxes (standing for suitable data transformations)
and widgets (standing for user interaction). The development session pro-
duces, in presentation mode, a web page where the user may trigger, and
interact with, the resulting compound service and related computations.
A successful GUI (and logic) is abstracted as a new service, characterized
as a widget, and stored in the widget library.

Keywords: Location-Based Services, visual programming, web service

1 Introduction

Cartographic Applications, traditionally concerning projects related to digital
cartography, like Geographic Information Systems, Digital Elevation Models,
Terrain Analysis and Remote Sensing, have always required a great amount
of vertical specialization, with reference to the used technologies, and to the
professional skills needed to implement the applications.

The new world of web changed this scenario radically; cartographic appli-
cations moved quickly from GIS technology (Geographic Information Systems),
currently downgraded to fill useful but peculiar application niches, towards Ge-
ographic Information Services. In few easy words: from GIS to ubiquitous GIS.
Such novel ubiquitous GIS is thoroughly oriented to, and supported by, informa-
tion services connected to geolocalization — i.e. Location Based Service. LBSs
provide advanced cartographical interfaces directly at final user’s disposal, and
may convey easy customization of information services that, hinged around lo-
calization attributes, become flexible, interactive, and strongly integrable.

At the present time, web techology is going to make available software frame-
works usable as SaaS (Software as a Service) components, that put the user in
control of programming—through suitable libraries (API/SDK)—highly special-
ized services, which are instantly deployable within the departments of a public



2 A. Bottaro et al.

institution or private company. The predictable future of this scenario, look-
ing beyond the infrastructural components and the evolution of technological
platforms, requires the adoption /development of novel visual programming en-
vironments, that must enforce the easiest (i.e. strongly based on drag-and-drop)
composition of elementary programmable components, in order to build highly
specialized applications and location-based services.

Fig. 1. Example of LBS (Location-Based Service) developed by SOGEI, a company
fully owned by Italian Ministry of Economy and Finance, for a related Agency.

This predictable trend is especially desirable when dealing with applications
of location intelligence, where sophisticated techniques of business intelligence
require a real-time visualization of discrete events or diffuse situations that
may evolve dynamically at various geographical levels, i.e. either countrywide
or within specified regional districts. Such analyses may concern also investiga-
tion activities, in fraud prevention and hampering, that may require autonomous
elaboration capability with high levels of secrecy.

2 Background

The visual programming approach of this research is based on a few simple-but-
pervasive concepts namely (a) computation as data transformation within a
dataflow, and (b) visual composition of web services that are going to shape the
rapid application development in the next years, where on-demand enterprise
IT services cry for a dynamically configurable architecture of the service process
engine [1]. Whereas other approches [5, 1] use either web reasoning or planning
[1] or Petri nets [7] for service composition, as in Ref. [3] we use a simple but
effective dataflow model. We briefly describe in the following the two fundamen-
tal abstractions that are used extensively in the project. Let us just recall that
abstraction is the process of ignoring the details, and to focus on the overall
design (the big picture).

2.1 Composition of web services

As defined by the W3C, a web service is a software system designed to support
interoperability between different computers on the same network. The main



Visual Programming of Location-Based Services 3

characteristic of a web service is to provide a software interface that other sys-
tems can interact with. The interface is operated through messages included in
an envelope. These messages are usually transported via the HTTP protocol
and formatted according to the standard XML, using some lightweight protocol
for exchange of messages between software components. Software applications,
possibly written in different programming languages, and deployed on different
hardware platforms, operate data exchange and execution of complex operations
either on corporate networks or the Internet, via the interfaces they expose pub-
licly and through the use of operations they make available. Web service-based
architectures generally, but not necessarily, make use of XML data represen-
tations. More efficient implementations, like the one we discuss in this paper,
use JSON. In particular, we discuss a novel approach that establishes an initial
library of interoperable software components, including location-based services
and related interfaces, as template GUI components, and accumulates successful
business processes as templates for new service classes.

2.2 Computations as data transformations

The abstract concept of function provides an important computational abstrac-
tion, since it encapsulates the type of computation and hides the details of the
calculation to the user. This one only needs to know the mechanism of the func-
tion call, and not how the function works. A single function superbly represents
the essential characteristics of a computation. Graphically, a function may be
represented by a rectangle (box) and by its function name. In abstract terms, it
is a transformation (mapping) between the set of possible data (input) and the
set of possible outcomes (output). In our visual programming approach, we only
use two symbols, possibly instantiated in a set of specialized icons, to represent
(at variable levels of detail) programs and data, respectively. Our computing
environment supports higher-level functions, i.e. services (programs) that ac-
cept other services in input and/or that produce other services. All functions
in this environment are unary, i.e. accept only one input and provide only one
output. Were this condition is not satisfied, either data containers or curried
higher-order functions are used. The first case is resolved visually with a single
rounded rectangle that hides the detail, the second one with a composition of
partial functions that are associated in a bijective manner to data components
[9]. The whole service can be viewed as a stateless data-flow graph with pipelined
data exchanges. In particular, we produce computable diagrams, which may be
directly executed for debugging, or exported as concurrent processes, or encap-
sulated and abstracted as a new higher-level service component. Each message
in each executable diagram can be stepwise graphically visualized on request.

2.3 A righteous mixup of web technologies

In this section we shortly discuss the selected set of web technologies that
our visual programming approach is based upon. They include prototype-based



4 A. Bottaro et al.

functional programming with Javascript, non-blocking Ajax methods, and Json-
based data representations.

Client-side scripting via Javascript The JavaScript language is used to gain
access to programmable objects in a client computational environment, typically
a web browser. It is characterized as an object-oriented scripting language, dy-
namically typed and prototype-based. Javascript is also considered a first-class
functional language, since it contains both closures and higher-order functions.
From this viewpoint, it is quite similar to Scheme, even if using a C-like sys-
tax. Javascript is maily used as a client-side language implemented within a
web browser, in order to offer powered user interfaces and access to dynamic
web sites. The main principles of the language design are derived from Scheme,
like lexical closures, i.e. namespaces of local symbols, and lambda functions, i.e.
anonymous functions, to be used as input/output values to/from other functions,
as well as from the Self language (prototype-based programming).

Prototype-based programming Prototype-based programming is an object-
oriented style without classes, where the reuse of behaviors—known as inheri-
tance in object-orientation based on classes—is obtained through a cloning pro-
cess of existing objects, that behave like prototypes, i.e. as archetypal exam-
ples. This programming model is also known as class-less or prototype-oriented,
and also as instance-based programming. The model contains two methods to
build new objects: a literal form for “ex nihilo” creation, and another one via
the cloning of existing objects, allowing for the addition of new properties non
present in the prototype. This programming paradigm looks as the best one in
order to accommodate the development of user interfaces that are both flexible
and sophisticated.

AJAX methods AJAX (standing for Asynchronous JavaScript and XML) is
a group of technologies for web development, used client-side to create inter-
active web applications through non-blocking server calls using JavaScript. By
using AJAX, web applications asynchronously receive data that are sent in back-
ground without interfering with the display and the behavior of the active pages.
Furthermore, AJAX uses a combination of HTML and CSS to define the pre-
sentation style of the information. The DOM model of the web page is accessed
via JavaScript to dynamically display the page, and to allow the user to interact
with the information thereof. For this purpose, JavaScript and XMLHttpRe-
quest supply asynchronous data exchange methods with the server, to avoid the
browser to refresh the whole page. Recently, JSON (JavaScript Object Notation)
and JavaScript are more and more utilized as an alternate efficient format for
data exchange and as data manipulation language, respectively. In particular,
the jQuery library supports a complete suite of AJAX methods. Objects and
methods contained thereof may open the browser multiple asynchronous data
channels to the server without requiring a refreshing of the current page.

JSON data representation and exchange JSON is a lightweight text for-
mat for data exchange. Since it is text-based, the data format is easy to read



Visual Programming of Location-Based Services 5

and to write for humans, and possesses a regular syntax that is easy to parse
automatically. Even more, JSON is exactly a subset of JavaScript, whose parsing
is even easier than the parsing of XML. JSON code is a literal representation of
Javascript arrays and objects, that can be nested at will. In particular, JSON
is built over efficient access to two universal data structures that are virtually
supported, in one form or in another, by all modern programming languages:

1. Collection of name/value pairs: in other languages, it is implemented as an
object, record, struct, dictionary, hash table, keyed list, or associative array.

2. Ordered list of values: in most languages it is implemented as array, vector,
list, or sequence.

Such two fundamental structures can be mutually nested in any way, therefore
allowing to easily represent any type of data structure.

HTML5 Canvas The HTML5 standard provides advanced functionalities de-
manded by novel Rich Internet Applications (RIA). In particular, the canvas
object yields raster visualization of any complexity and precision, that previ-
ously was provided only by vector web graphics based on SVG (Scalable Vector
Graphics), that needed a suitable plugin in the browser. The HTML5 document
defines the <canvas> element as “a resolution-dependent bitmap canvas which
can be used for rendering graphs, game graphics, or other visual images on the
fly.” In other words, a canvas is a page rectangle were the application can draw
by using JavaScript. HTML5 provides a set of functions (canvas API) to draw
geometric shapes, define open or closed vectorial paths, create color gradients,
and apply geometric transformations and image filters.

WebGL: advanced web graphics The embedded JavaScript code writes the
canvas DOM elements with drawing functions that may produce both 2D and
3D interactive graphics, even generated via the hardware support of the GPU,
if present, using the webGL framework. WebGL is a multi-platform and multi-
vendor standard API for low-level 3D web graphics based on OpenGL ES 2.0
(the version for mobile devices), exposed through HTML5 Canvas as elements
of the DOM inteface. Several libraries are currently being developed to allow
an higher-level employment of the amazing graphics power exposed via WebGL
canvas and the Javascript language directly in the web page by the browser, and
without the use of any specialized plugin.

3 User Interaction Methods

We distinguish here between two main classes of user-interaction methods, namely
the development style, committed to the interactive generation of executable di-
agrams and user interfaces, and the navigation style, used for navigation of in-
formation diagrams and for exploration of the hierarchical structure of basic and
complex widgets, as well as for the interactive exploration of the logic of rich
internet applications. The development style, or 2D visual programming style,



6 A. Bottaro et al.

Browser

JavaScript

VisPro

App
1

App
2

App
3

App
4

App
n

HTML5

JS	
  Framework

…

JSON

Fig. 2. A stack metamodel of the VisPro visual programming environment.

is based on drag-and-drop interaction, icon generation, input-output of widgets
from a structured library of programmable objects. The navigation style, or 3D
visual documentation style, presents the user with a dynamic view of the hier-
archical structure of a rich internet application. The 3D style can be used for
purposes of interactive software documentation and for training of developers of
RIAs and UIs.

3.1 Visual Programming (2D)

The widgets (or controls) of the GUI (Graphical User Interface) are defined as
reusable elements of the graphical user interface. They offer a pleasant layout
of the information and provide the user standardized techniques for data ma-
nipulation. In particular, a widget is a GUI element that produces some data
input/output in a way more or less modifiable by the user; for example just
consider a GUI window or a text box.

The main characteristic of a widget is to give the user a single interaction
point for the direct manipulation of a specific type of datum. In other words,
the widgets of the user interface are single visual building blocks that, when
suitably combined into an application, may visualize both the data elaborated
by the application and, in variable measure, the relations between them and the
application logic. Of course, a web widget is a software control for the web. In
practice, it is a small application that can be installed within a web page and
can be executed directly by the final user. A web control is often a stand-alone
application that can be embedded from third-party sites by a user with suitable
write-access to somewhere (e.g. to a web page, a blog, the user profile in some
multimedial social site, etc.).

The VisPro environment uses a very simple approach to service composition:
(a) the developer takes a set of web widgets from a library, (b) builds interac-
tively a user interface by drag-and-drop operations, (c) builds the application
logic of the web service by drawing the connections between boxes (standing



Visual Programming of Location-Based Services 7

for suitable data transformations) and widgets (standing for user interaction).
The development session produces, in presentation mode, a web page where the
user may trigger, and interact with, the novel data mining and related com-
putation. A successful interface (and logic) is abstracted as a new web service,
characterized by a new widget, and stored in the widget library.

! ""!

Developer VisPro 
Builder

VisPro
Project

VisPro
App

VisPro
Engine

HTML5
Browser

User

JSON

{…}

JSON

{…}

HTML5

<…>

JSON

{…}

Fig. 3. The process of producing and using visual programming applications. The
repository of widgets (one-to-one with data services) plays the central role.

4 The VisPro Architecture

4.1 Terminology

Some preliminary definitions may be useful to compactly set out the main char-
acteristics of the visual programming environment VisPro discussed here.

1. logical workspace (LW): work area where to define the application logic;
2. visual normalized space (VN): work area where to define the UI;
3. databox : basic element of logical workspace that represents a data object;
4. funcbox : basic element of logical workspace that represents a function (ser-

vice or data transformation);
5. inlet : connection area for input links to a box (databox or funcbox);
6. outlet : connection area for output links from a box (databox or funcbox);
7. link : connection element between the outlet of a box and the inlet of another.



8 A. Bottaro et al.

4.2 Workspace layout

According with the well-known design rule of information systems, that requires
a strong separation between the application logic and the application presenta-
tion, the whole VisPro workspace is split into two adjacent areas denoted as
LW and VN, respectively, that become alternating when the tool will be ported
to mobile devices. The LW is responsible for the application logic definition,
whereas the VN is in charge for the visual definition of the user interface of the
new service, including the layout of the presentation and the positioning and
dimensioning of the component widgets.

A service layout typically possesses a hierarchical structure, being composed
by widgets properly instanced and arranged by means of affine transformations
(translations, rotations, scalings) within the Visual Normalized space. Since each
widget may in turn be composed by other widgets, the hierarchical structure of
the VN content is represented as a directed acyclic multigraph (we refer to it as
the presentation graph of the service)

The VisPro interaction and building tools (single and multiple selection,
transformation handles, etc.) allow the user to work in both the layout zones
(LW and VN) at any chosen hierarchical levels, by selecting groups of widgets,
as well as by using a stratified organization of elements by layers. Each object
in the VN correspond to an object in the LW. The converse is not true. Some
elements of the LW may have no mapping to elements in the user interface.

4.3 Computational model

As already discussed in the Introduction section, the computational model un-
derlying VisPro is the data flow model. Some properties neeed to be introduced
to correctly represent a data flow graph.

Assumptions In particular, we postulate the following assumptions:

1. a databox represents a datum and is provided with only one outlet;
2. a funcbox represents a function and is provided with one or more inlets and

only one outlet;
3. to each inlet can be connected only one link;
4. multiple links can be conversely connected to the same outlet.

Our visual programming is based on two main interaction operations:

1. the insertion of a box (funcbox or databox);
2. the linking of the outlet of a box to the inlet of another one.

Computational network A funcbox produces an output dataflow by applying
the function it represents to its input dataflows. The computation of a funcbox
is only triggered when at least one datum is available for each funcbox inlet.
The triggering of the function computation over a tuple of input data is sparked
when the last needed datum is received by the funcbox. The triggering condition,



Visual Programming of Location-Based Services 9

together with the constraint concerning the existence of only one link for each
inlet, allow to prove the nonexistence of flow loops in the computational network.

The set of links determines a direct acyclic graph of the computation. The
whole computation is modeled by a modified DFS (Depth First Search) traver-
sal that requires that all the inputs necessary for the trigging of each single
computation are available. The traversal ordering is established by visiting, in
connection order, the first node with all input available.

Fig. 4. Example of simple computational network

Example Let the output of node A in Figure 4 be connected with an input
of B (requiring two inputs) and with C (single input). Let the C output linked
with the other input of B. At first, when the computation is started from A, the
triggering of the B computation is attempted. But the tentative cannot proceed
because the second datum of B is missing. Therefore the A node starts the C
computation. When halted, C will attempt the triggering of B. This time the
try has success because the B inputs are all available.

4.4 Process communication

The linking of two boxes is always directed from an outlet towards an inlet, and
no vice versa. In particular an inlet is connected to an outlet if interested to
the flow of data passing through it. The action of connecting can be seen as a
registration at the notification of an event:

1. the outlet is the event publisher;
2. the inlet is the event subscriber;
3. the release of a datum by the outlet is the triggering event;

when a databox releases an instance of its datum, or when a funcbox releases an
instance of its output, the outlet generates the event associated to the release of
the datum, and notifies all the inlets interested to such datum.

Process registration and notification Let us recall that within the JavaScript
language the functions are first-class objects, and the scope is lexical, so that the
functions have access to the context they are created within. This amazing lan-
guage feature allow one to exploit the callback functions as connection apparatus.



10 A. Bottaro et al.

In particular, the registration consists in passing a callback function from the
inlet to the outlet. Conversely, the notification consists in the execution by the
outlet of all the callback functions registered thereof. Also, the callback function
employed in the registration maintains a full access to the context where it was
created (i.e. to its closure) so transmitting its own knowledge to its publisher,
that does not use a copy of it, but the function itself.

Triggering the funcbox computation Each inlet has an associated callback
function. The execution of the callback by the outlet provides the flow of the
datum from the outlet to the corresponding inlet. Therefore, when a funcbox
receives an input datum (via the inlet), verifies that all the other inputs are
present and, if this predicate is true, applies to them the function associated to
it (that we can call also box behavior). When the execution terminates, or when
an item of the output stream has been generated, the funcbox will execute the
callback functions registered on its outlet.

Data caching Let us consider a funcbox B with two inlets i1 and i2. Let
a datum be arrived in i1 but not in i2. The B computation cannot start, of
course. The arrival of a new datum in i1 would imply the loss of the previous
one. Therefore, each inlet is provided of a queue temporary storing the transient
dataflow. When a computation is triggered the needed data are retrieved from
the queues. No data loss results from this very simple caching approach.

4.5 Service Security

In order to provide the VisPro users with a secure and reliable development
platform, the project implements a standard two-phases authentication facil-
ity [12]. Therefore, in the VisPro environment, each client ensures the authen-
ticity of the server, and enforces a secure communication, by connecting through
an SSL/TLS [13,2] channel. User authentication is performed comparing hashed
versions of the secret passphrase entered by the user, with a calculated one on
the server side. Hashing functions on both sides are chosen within the Secure
Hashing Algorithm family [6,5], that provides a high security level with respect
to current cryptanalysis evaluations [8,4].

An additional time-based control is performed, inspired by the Kerberos pro-
tocol [10], in order to ensure the authenticity of an authentication sequence
within a man-in-the-middle attack scenario: in this case, a challenge-response
sequence requiring a long timeframe is a strong indication that the original
message has been diverted, and the communication between the server and the
(supposed) client cannot be considered secure.

Once the identity of a user is established, it is associated with one or more
group memberships, mimicking standard POSIX user-group links. Additionally,
each object possesses an associated access control list (ACL), reflecting standard
POSIX.1e capabilities [11], allowing the VisPro users to read, and modify, each
object in the visual programming platform with an object-access granularity.



Visual Programming of Location-Based Services 11

5 Conclusion

The VisPro programming environment is currently under development using
webGL, HTML5 and a set of Javascript frameworks. We are going in few months
to make the first experiments of localization intelligence according to the strong
initial requirements of this project.

References

1. Agarwal, V., Dasgupta, K., Karnik, N., Kumar, A., Kundu, A., Mittal,
S., and Srivastava, B. A service creation environment based on end to end
composition of web services. In WWW 05: Proceedings of the 14th international
conference on World Wide Web (New York, NY, USA, 2005), ACM, pp. 128–137.

2. Allen, C. e. a. The transport layer security (TLS) protocol. RFC 5246, August
2008.

3. Curbera, F., Duftler, M., Khalaf, R., and Lovell, D. Bite: Workflow
composition for the web. In ICSOC-07: Proceedings of the 5th international con-
ference on Service-Oriented Computing ((Berlin, Berlin, Heidelberg, 2007, 2007),
Springer-Verlag, pp. 94–106.

4. De Cannière, C., and Rechberger, C. Finding SHA-1 characteristics: General
results and applications. In Advances in Cryptology ASIACRYPT 2006, X. Lai and
K. Chen, Eds., vol. 4284 of Lecture Notes in Computer Science. Springer, 2006,
pp. 1–20.

5. Eastlake, D. E., and Hansen, T. US secure hash algorithms (SHA and HMAC-
SHA). RFC 4634, July 2006.

6. Eastlake, D. E., and Jones, P. E. US secure hash algorithm 1 (SHA1). RFC
3174, September 2001.

7. Gao, M., and Wu, Z. Epn-based web service composition approach. In WISM-
09: Proceedings of the International Conference on Web Information Systems and
Mining (Berlin, Heidelberg, 2009, 2009), Springer-Verlag, pp. 345–354.

8. Matusiewicz, K., Pieprzyk, J., Pramstaller, N., Rechberger, C., and Ri-
jmen, V. Analysis of simplified variants of SHA-256. In Western European Work-
shop on Research in Cryptology (2005).

9. Milicchio, F., Bertoli, C., , and Paoluzzi, A. A visual approach to geometric
programming. Computer-Aided Design and Applications 2, 1-4 (2005), 411–421.

10. Neuman, B. C., and Ts’o, T. Kerberos: An authentication service for computer
networks. IEEE Communications 32, 9 (1994).

11. of Electrical, I., and Engineers, E. IEEE standards interpretations for IEEE
standard portable operating system interface for computer environments. IEEE
1003.1-1988/INT, 1992.

12. Stallings, W. Network Security Essentials, Applications and Standards. Prentice-
Hall, 2000.

13. Wagner, D., and Schneier, B. Analysis of the ssl 3.0 protocol. In USENIX
Workshop on Electronic Commerce (1996).


	Visual Programming of Location-Based Services

